
4.6 Dirichlet’s Hyperbolic Method

The result ∑
n≤x

1

n
= log x+O(1) (1)

was used to prove ∑
n≤x

d(n) = x log x+O(x) , (2)

where d(n) is the divisor function.

In Chapter 2 the result (1) was improved to

Theorem 1 There exists a constant γ > 0 such that∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
.

If this is used in the proof of (2) to give extra main terms and a smaller
error, it fails. A method designed by Dirichlet to improve (2) can be given
generally as

Theorem 2 Dirichlet’s Hyperbolic Method Assume that f and g are
arithmetic functions and write

F (x) =
∑

1≤n≤x

f(n) and G(x) =
∑

1≤n≤x

g(n) .

Then∑
1≤n≤x

f ∗ g (n) =
∑

1≤a≤U

f(a)G
(x
a

)
+
∑

1≤b≤V

F
(x
b

)
g (b)− F (U)G(V )

for any UV = x.

Proof From the definition of convolution we have∑
1≤n≤x

f ∗ g(n) =
∑

1≤n≤X

∑
ab=n

f(a) g(b) =
∑

1≤ab≤X

f(a) g(b) ,

where the sum is over the set

S =
{

(a, b) ∈ Z2 : ab ≤ x
}
.
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This is the set of ordered integer pairs under the hyperbola ab = x, giving
the name to this method.

b

(0,0) a

Now choose U, V ≥ 1 such that UV = x. We first sum over the integer
pairs (a, b) under the hyperbola with a ≤ U .

b

(0,0) a

V

U
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Then we sum over the pairs with b ≤ V .

b

(0,0) a

V

U

But we will then have summed twice over the points in the rectangle that
is the intersection of these two regions.

b

(0,0) a

V

U

Thus we have to remove one of these summations over the points (a, b) with
a ≤ U and b ≤ V . In this way we obtain∑

(a,b)∈S

f(a) g(b) =
∑
ab≤x

∑
a≤U

f(a) g(b) +
∑
ab≤x

∑
b≤V

f(a) g(b) (3)

−
∑
a≤U

∑
b≤V

f(a) g(b)
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Alternative derivation of (3). Since UV = x then, if (a, b) satisfies ab ≤ x
it may be that a ≤ U . But if this is not the case, i.e. a ≥ U then

b ≤ x/a ≤ x/U = V.

Thus either a ≤ U or b ≤ V . Hence S = S1 ∪ S2 where

S1 =
{

(a, b) ∈ Z2 : ab ≤ x, a ≤ U
}

and S2 =
{

(a, b) ∈ Z2 : ab ≤ x, b ≤ V
}
.

Therefore∑
(a,b)∈S

f(a) g(b) =
∑

(a,b)∈S1∪S2

f(a) g(b)

=
∑

(a,b)∈S1

f(a) g(b) +
∑

(a,b)∈S2

f(a) g(b)−
∑

(a,b)∈S1∩S2

f(a) g(b) ,

since to sum over the elements of S1 and then over the elements of S2 means
that you will have summed over the elements of S1 ∩ S2 twice. Yet

S1 ∩ S2 =
{

(a, b) ∈ Z2 : ab ≤ x, a ≤ U, b ≤ V
}

=
{

(a, b) ∈ Z2 : a ≤ U, b ≤ V
}
,

since, if a ≤ U, and b ≤ V then ab ≤ UV = x. Thus we again get (3),∑
(a,b)∈S

f(a) g(b) =
∑∑
ab≤x, a≤U

f(a) g(b) +
∑∑
ab≤x, b≤V

f(a) g(b)

−
∑∑
a≤U, b≤V

f(a) g(b) .

But however we get here, we continue as∑
(a,b)∈S

f(a) g(b) =
∑
a≤U

f(a)
∑
b≤x/a

g(b) +
∑
b≤V

g(b)
∑
a≤x/b

f(a)

−
∑
a≤U

f(a)
∑
b≤V

g(b)

=
∑
a≤U

f(a)G
(x
a

)
+
∑
b≤V

g(b)F
(x
b

)
− F (U)G(V ) .

�
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The Hyperbolic Method can be used to improve (2) to

Theorem 3 For the divisor function we have∑
n≤x

d(n) = x log x+ (2γ − 1)x+O
(
x1/2

)
.

Proof The hyperbola method gives∑
n≤x

d(n) =
∑
n≤x

1 ∗ 1(n) =
∑
a≤U

∑
b≤x/a

1 +
∑
b≤V

∑
a≤x/b

1−

(∑
a≤U

1

)(∑
b≤V

1

)
, (4)

for some UV = x to be chosen. The first term equals∑
a≤U

[x
a

]
=
∑
a≤U

(x
a

+O(1)
)

= x
∑
a≤U

1

a
+O(U) .

The second term similarly equals∑
b≤V

[x
b

]
=
∑
b≤V

(x
b

+O(1)
)

= x
∑
b≤V

1

b
+O(V ) .

So we have two error terms O(U) and O(V ). We now choose U and V to
equalise these errors, i.e. choose U = V = x1/2. In that case the first two
terms in (4) are equal and thus the right hand side of (4) is

2
∑

a≤x1/2

[x
a

]
−
[
x1/2

]2
= 2

∑
a≤x1/2

(x
a

+O(1)
)
−
(
x1/2 +O(1)

)2

= 2X
∑

a≤x1/2

1

a
+O

 ∑
a≤x1/2

1

− (x+O
(
x1/2

))

= 2x

(
log
(
x1/2

)
+ γ +O

(
1

x1/2

))
+O

(
x1/2

)
−
(
x+O

(
x1/2

))
,

having used Theorem 1, which gives the stated result. �

To improve our result on
∑

n≤x d3(n) using this improved result for
∑

n≤x d(n)

requires a further application of the Hyperbolic method and is left as an ex-
ercise for the interested student.
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Problems on Hyperbolic Method

The simplest application of the Hyperbolic function is to the divisor func-
tion. All the other applications are far more involved, though more interest-
ing in that we need choices of U and V different from U = V = x1/2.

1) Use the Hyperbolic method to prove∑
n≤x

2ω(n) =
x

ζ(2)
log x+ c1x+O

(
x2/3

)
,

for some constant c1.

Hint Recall a result on Problem Sheet 5, that there exists a constant CQ

say, for which ∑
b≤V

Q2(b)

b
=

1

ζ(2)
log V + CQ +O

(
1

V 1/2

)
.

This is shown in exactly the same way as∑
a≤U

1

a
= logU + γ +O

(
1

U

)
,

which will also have to be used.

2) Let g(n) = d(n2) where d is the divisor function. In Problem Sheet 2 we
have g = 1 ∗ 1 ∗ 1 ∗ µ2 = d ∗ Q2. Can the Hyperbolic Method be used to
improve previous results on

∑
n≤x d(n2)?

To do so you need to prove

i) There exists a constant Cd say for which∑
a≤U

d(a)

a
=

1

2
log2 U + 2γ logU + Cd +O

(
1

U1/2

)
.

ii) There exists a constant CQ say, for which∑
b≤V

Q2(b)

b
=

1

ζ(2)
log V + CQ +O

(
1

V 1/2

)
.

iii) Use the above results in the Hyperbolic Method to show that∑
n≤x

d
(
n2
)

=
1

2ζ(2)
x log2 x+ c1x log x+ c2x+O

(
x3/4 log x

)
,
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for some constants c1 and c2.

3) (Hard) For k ≥ 2 prove using the Hyperbolic Method and induction that∑
n≤x

dk(n) = xPk−1 (log x) +O
(
x1−1/k logk−2 x

)
,

where Pd (y) is a polynomial of degree d in y.
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